Frequency of Sucrase Deficiency in Mucosal Biopsies

Carbohydrates, sugars, and starches are an important source of energy, especially for the brain, which is completely dependent on glucose for energy (1). The US Department of Agriculture recommends that carbohydrates provide 45% to 65% of daily energy units (2) and the dietary reference intakes set the adequate

From the *Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, the †Departments of Pediatrics, and the ‡Biostatistics, State University of New York at Buffalo, Buffalo, New York. Address correspondence and reprint requests to Susan S. Baker, MD, PhD, Digestive Diseases and Nutrition Center, Women and Children’s Hospital, 219 Bryant St, Buffalo, NY 14222 (e-mail: saker@upa.chob.edu). Study supported by an unrestricted grant from QOL Medical, Vero Beach, FL. The authors report no conflicts of interest.

Copyright © 2012 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition DOI: 10.1097/01.mpj.0000421405.42386.64
Disaccharidase analyses were performed on small bowel biopsies according to the method of Dalqvist (3). Briefly, the tissue was homogenized and then the respective substrate, lactose, sucrose, maltose, or palatinose, was added. The amount of glucose produced was quantified with a Beckman DU 800 spectrophotometer (Beckman Coulter, Jersey City, NJ). Protein was quantified according to the method of Lowry et al (4).

The log books of all of the disaccharidase analyses performed between January 1, 2006 and July 29, 2011, were reviewed. Information on the following categories was included in the data collection and entered into a Microsoft Excel database: date of birth, date of analysis, age at time of analysis, and results of assays for lactase, sucrose, maltase, and palatinase. Data were imported from the Microsoft Excel database into the SAS software package (SAS Institute, Cary, NC). Descriptive statistics were generated using frequency tables.

RESULTS

From January 1, 2006 through July 29, 2011, the laboratory received 30,334 samples. The samples varied widely in size of tissue and condition on arrival. Of those samples, 18 were insufficient or were received in a compromised state, so the assay could not be performed. For 1191 of the 30,314 samples, either a lactase-only level was ordered or the quantity was not sufficient to perform the other disaccharidase assays. Of the remaining samples, there was adequate tissue to perform the sucrase, maltase, and palatinase assays and protein level in 27,875.

The samples varied widely in size of tissue and condition on arrival. Eighteen of the samples were insufficient or were received in a compromised state, so the assay could not be performed. For 1191 of the 30,314 samples, either a lactase-only level was ordered or the quantity was not sufficient to perform the other disaccharidase assays. Of the remaining samples, there was adequate tissue to perform the sucrase, maltase, and palatinase assays and protein level in 27,875.

Variable | No. analyses | Mean | Median | Standard deviation | Minimum | Maximum |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>30,281</td>
<td>11.00</td>
<td>11.17</td>
<td>7.21</td>
<td>0</td>
<td>93.5</td>
</tr>
<tr>
<td>Lactase, μmol · min⁻¹ · g⁻¹ protein</td>
<td>30,314</td>
<td>21.80</td>
<td>17.50</td>
<td>19.11</td>
<td>0</td>
<td>173</td>
</tr>
<tr>
<td>Sucrase, μmol · min⁻¹ · g⁻¹ protein</td>
<td>29,123</td>
<td>56.49</td>
<td>53.40</td>
<td>27.77</td>
<td>0</td>
<td>241</td>
</tr>
<tr>
<td>Maltase, μmol · min⁻¹ · g⁻¹ protein</td>
<td>28,795</td>
<td>167.59</td>
<td>161.80</td>
<td>67.63</td>
<td>0</td>
<td>767</td>
</tr>
<tr>
<td>Palatinase, μmol · min⁻¹ · g⁻¹ protein</td>
<td>27,875</td>
<td>11.31</td>
<td>9.90</td>
<td>6.74</td>
<td>0</td>
<td>156.4</td>
</tr>
</tbody>
</table>

DISCUSSION

Disaccharidase deficiencies are clinically associated with diarrhea, bloating, flatulence, and abdominal pain. Relief of symptoms is achieved by avoidance of the disaccharide or, in the case of lactase or sucrase deficiency, concurrent ingestion of supplemental lactase or sucrase with the sugar. These supplemental enzymes are beneficial for individuals with congenital enzyme deficiencies, but
TABLE 2. Frequency of enzyme deficiencies

<table>
<thead>
<tr>
<th>Lactase</th>
<th>Sucrase</th>
<th>Maltase</th>
<th>Palatinase</th>
<th>N</th>
<th>%</th>
<th>Mean age, y</th>
<th>Median age, y</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>15,265</td>
<td>54</td>
<td>10.2</td>
<td>10.3</td>
<td>7.0</td>
</tr>
<tr>
<td>Deficient</td>
<td>Deficient</td>
<td>Deficient</td>
<td>Deficient</td>
<td>2347</td>
<td>8</td>
<td>11.1</td>
<td>11.4</td>
<td>6.5</td>
</tr>
<tr>
<td>Normal</td>
<td>Deficient</td>
<td>Normal</td>
<td>Normal</td>
<td>11</td>
<td>0.04</td>
<td>11.7</td>
<td>12.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Normal</td>
<td>Deficient</td>
<td>Normal</td>
<td>Normal</td>
<td>30</td>
<td>0.1</td>
<td>10.2</td>
<td>11.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Normal</td>
<td>Deficient</td>
<td>Deficient</td>
<td>Deficient</td>
<td>149</td>
<td>0.5</td>
<td>8.9</td>
<td>8.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Deficient</td>
<td>264</td>
<td>1.0</td>
<td>9.7</td>
<td>10.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Deficient</td>
<td>3</td>
<td>0.001</td>
<td>5.0</td>
<td>2.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Deficient</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>8963</td>
<td>32</td>
<td>12.6</td>
<td>12.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Deficient</td>
<td>Normal</td>
<td>Deficient</td>
<td>Normal</td>
<td>662</td>
<td>2.3</td>
<td>11.9</td>
<td>12.1</td>
<td>6.5</td>
</tr>
<tr>
<td>Deficient</td>
<td>Deficient</td>
<td>Normal</td>
<td>Normal</td>
<td>17</td>
<td>0.06</td>
<td>11.3</td>
<td>11.7</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Normal = Lactase >10 μmol · min⁻¹ · g⁻¹ protein, sucrose >25 μmol · min⁻¹ · g⁻¹ protein, maltase >160.8 ± 62.8 μmol · min⁻¹ · g⁻¹ protein, palatinase > 11.1 ± 6.5 μmol · min⁻¹ · g⁻¹ protein. Deficient = lactase ≤10 μmol · min⁻¹ · g⁻¹ protein, sucrose ≤25 μmol · min⁻¹ · g⁻¹ protein, maltase ≤100 μmol · min⁻¹ · g⁻¹ protein, palatinase ≤5 μmol · min⁻¹ · g⁻¹ protein.

they may also offer relief for transient deficiencies such as may occur with small bowel injury.

The strengths of these data lie in the large sample size that is nationally representative and the consistent and experienced personnel who performed the analyses; the enzyme assay has been in use and has not changed in decades. The weaknesses of these data lie in the lack of clinical correlation, the selection by the endoscopists of a young age group from which samples were obtained, the inability to control for sample integrity throughout the entire process of obtaining the samples, and handling and shipping. The analyses were performed manually, and human error is always a possibility. We conclude that the most common disaccharidase deficiency is lactase followed by pansaccharidase. Sucrase deficiency was rare in these samples.

REFERENCES

Phenotypic Observations by the CSID Dietary and Medical Support Group

Mary H. Slawson

For 16 years, the congenital sucrase-isomaltase deficiency (CSID) parent support group has followed 7433 individuals diagnosed by small bowel biopsy with CSID: children (848 ages 0 to 2 years, 1722 ages 3 to 4 years, 1241 ages 5 to 8 years, and 2422 ages 9 to 17 years), adults (1200), and >44,000 blood-related relatives. Based on small bowel biopsy results and detailed clinical dietary history, 5 different clinical phenotypes have been proposed for which specific diet regimens have been developed. Patients following these diets report significant improvement in their symptoms. This article provides a brief overview of the proposed phenotypes and diet recommendations identified by the parent support group. Available enzyme therapies are discussed.

PROPOSED PHENOTYPES BASED ON INTESTINAL DISACCHARIDASE ACTIVITY AND DIETARY TOLERANCES

Table 1 identifies the proposed clinical phenotypes based on the reduction in small intestinal disaccharidase activities and dietary tolerance among those patients with CSID followed by the support group. The range of mucosal biopsy activities is taken from Table 2, which summarizes 3 patterns of CSID disaccharidase mucosal enzyme deficiencies described in the literature (1–7) and in this workshop (8–11) and makes a tentative correlation with the dietary tolerances in Table 1. One goal of future research is to confirm whether these 5 dietary phenotypes correlate with 3 mutant genotypes of SI. The enzymatic recognition of SCID is presently limited to biopsies with lactase activities >10 enzyme units (1–10), but there may be others within the large group of sucrase deficiencies with lactase activities falling below this level that await identification by new methods of genetic analysis (12).

DIETARY INTOLERANCES

None of the patients in any of the phenotypes can tolerate the following sweeteners: hydrogenated glucose syrup, galactose/maltose/malt sugar, ascesulfame K, maltitol/maltitol syrup, brown rice syrup, NutraSweet/neotame, or Stevia/diterpene glycosides. Sucrose can be tolerated in only extremely small amounts without enzyme supplementation, whereas crystalline glucose, dextrose,